21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273 | class Loader:
"""Load files into a standardized format.
Potential functions to override if implementing a custom Loader class:
- `file_to_docs()`: the logic for how a file is converted to an
EnhancedDocument.
"""
def __init__(
self,
autoloader_config: dict = DEFAULT_AUTOLOADER_CONFIG,
) -> None:
"""
Initializes a Loader instance with a given autoloader configuration.
Args:
autoloader_config (dict): Configuration for autoloaders that
determines how different file types are processed.
Attributes:
autoloader_config (dict): Stores the provided autoloader
configuration.
autoloaders (Set[str]): Set of valid autoloaders based on the
configuration.
"""
self.autoloader_config: dict = autoloader_config
self.autoloaders: Set[str] = self._get_valid_autoloaders()
def load_dataset(
self,
input_dir: str,
output_dir: str,
is_zipped: bool = False,
unzip_dir: Optional[str] = None,
detailed_progress: bool = False,
num_workers: int = 10,
max_files: Optional[int] = None,
) -> None:
"""
Loads a dataset from a specified directory, processes files into
EnhancedDocument objects, and saves them to disk.
Args:
input_dir (str): Path to the directory containing the dataset.
is_zipped (bool): Whether the dataset is in a zipped format.
unzip_dir (Optional[str]): Directory to unzip files to if
applicable.
output_dir (str): Directory where processed documents should be
saved.
detailed_progress (bool): Whether to display detailed progress
information.
num_workers (int): Number of worker processes to use for loading
files.
max_files (int, optional): Maximum number of files to process.
"""
logging.debug("Loading dataset from %s", input_dir)
if is_zipped:
directory = self.unzip_dataset(input_dir, unzip_dir)
else:
directory = input_dir
num_files = None
if detailed_progress:
total_files = len(list(get_files_from_dir(directory)))
num_files = min(total_files, max_files)
partial_func = partial(
self.load_file, save_docs=True, output_dir=output_dir
)
with tqdm(
total=num_files, desc="Loading files", unit="files", smoothing=0
) as pbar:
with multiprocessing.Pool(num_workers) as pool:
for i, _ in enumerate(
pool.imap_unordered(
partial_func,
get_files_from_dir(directory),
)
):
pbar.update(1)
if max_files is not None and i + 1 >= max_files:
break
def load_file(
self, save_docs: bool, output_dir: Optional[str], file_path: str
) -> List[EnhancedDocument]:
"""
Loads a single file from the given path and optionally saves the
processed document.
Args:
save_docs (bool): Whether to save the processed documents.
output_dir (str, optional): Directory where processed documents
should be saved.
file_path (str): Path to the file being loaded.
Raises:
AssertionError: If `save_docs` is True but `output_dir` is None.
"""
logging.debug("Loading file: %s", file_path)
docs = self.file_to_docs(file_path)
if save_docs:
assert output_dir is not None
save_docs_to_file(docs, file_path, output_dir)
logging.debug("Loaded file: %s", file_path)
return docs
def file_to_docs(self, file_path: str) -> List[EnhancedDocument]:
"""
Processes a file into a list of EnhancedDocument objects based on the
file extension and configured autoloaders.
Args:
file_path (str): Path to the file being processed.
Returns:
List[EnhancedDocument]: A list of EnhancedDocument objects created
from the file.
"""
logging.debug("Converting file to EnhancedDocuments.")
# NOTE(STP): Switching to unstructured's file-type detection in the
# future might be worthwhile (although their check for whether a file
# is a JSON file is whether or not json.load() succeeds, which might
# not be performant?).
# See https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/file_utils/filetype.py # noqa: E501
file_extension = file_path.split(".")[-1]
if file_extension == "json" and "JSONLoader" in self.autoloaders:
config = self.autoloader_config["JSONLoader"]
kwargs = {**config["required"], **config["optional"]}
try:
loader = JSONLoader(file_path, **kwargs)
docs = loader.load()
except Exception as e:
logging.debug(
"Filepath %s failed to load using JSONLoader: %s\n "
"Falling back to generic loader.",
file_path,
e,
)
docs = self.fallback_loader(file_path)
elif file_extension == "csv" and "CSVLoader" in self.autoloaders:
config = self.autoloader_config["CSVLoader"]
kwargs = {**config["required"], **config["optional"]}
try:
loader = CSVLoader(file_path, **kwargs)
docs = loader.load()
except Exception as e:
logging.debug(
"Filepath %s failed to load using CSVLoader: %s\n"
"Falling back to generic loader.",
file_path,
e,
)
docs = self.fallback_loader(file_path)
else:
# Fallback to unstructured loader.
docs = self.fallback_loader(file_path)
enhanced_docs = [EnhancedDocument.from_document(doc) for doc in docs]
logging.debug("Converted file to EnhancedDocuments.")
return enhanced_docs
def fallback_loader(self, file_path) -> List[Document]:
"""
Uses a generic loader to process files when specific loaders are not
applicable or fail.
First, we try to use the UnstructuredFileLoader, which is a somewhat
intelligent loader. However, if that fails, we fall back the the most
basic loader - the TextLoader.
Args:
file_path (str): Path to the file being loaded.
Returns:
List[Document]: A list of Document objects loaded using the
fallback method.
"""
logging.debug("Using fallback loader for %s.", file_path)
try:
loader = UnstructuredFileLoader(
file_path,
mode="elements",
strategy="fast",
)
docs = loader.load()
except Exception as e:
logging.debug("Failed to use UnstructuredFileLoader: %s", e)
logging.debug("Falling back to basic TextLoader...")
loader = TextLoader(file_path)
docs = loader.load()
return docs
def unzip_dataset(self, input_dir: str, unzip_dir: Optional[str]) -> str:
"""
Unzips a dataset from a specified input directory into a target unzip
directory.
Args:
input_dir (str): Path to the zipped dataset.
unzip_dir (Optional[str]): Target directory for the unzipped files.
If not set, will unzip to current directory.
Returns:
str: Path to the directory containing the unzipped files.
"""
# TODO(STP): Make this check cleaner.
if input_dir[-4:] != ".zip":
raise ValueError(
"Zipped dataset name must end in '.zip', not %s. "
"Received dataset name: %s",
input_dir[-4:],
input_dir,
)
dataset_name = os.path.basename(input_dir)[:-4]
if unzip_dir is not None:
target_directory = os.path.join(unzip_dir, dataset_name)
else:
target_directory = dataset_name
target_directory = unzip_recursively(input_dir, target_directory)
return target_directory
def _get_valid_autoloaders(self) -> Set[str]:
"""Returns the set of valid autoloaders.
An autoloader is considered valid if the required arguments for
the autoloader exist in the loader_config.
This function will only be called once per dataset.
Returns:
Set[str]: A set of autoloaders that have all required arguments
available.
"""
autoloaders = set()
for autoloader, config in self.autoloader_config.items():
usable = True
required_config = config["required"]
for required_arg, val in required_config.items():
if val is None:
usable = False
break
if usable:
autoloaders.add(autoloader)
return autoloaders
|